《长方体和正方体体积》教学设计
《长方体和正方体体积》教学设计
一、教学目标
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
二、教学准备
教具准备:教学课件、一个长方体拼制模型(长4厘米、宽3厘米、高2厘米)。学具准备:每组24个边长1立方厘米的小木块。
三、教学过程
一 、复习引入
1、我们已学习了体积和体积单位,谁能说说1立方厘米是怎么规定的?
课件出示1立方厘米的正方体组成的长方体,分别让学生说说它们的体积是多少。
(1)、学生想办法求它的体积。
(2)、下面就让我们运用1立方厘米的体积单位来研究长方体、正方体的体积计算方法。(出示课题)
二、长方体体积计算公式推导与理解
(1)、探究长方体的体积
1、布置活动任务。
教师出示24个1立方厘米的体积单位。
师:我们每个组都准备24个1立方厘米的小正方体木块,请你任意摆放成一个长4厘米、宽3厘米、高2厘米的长方体。
小组活动,活动的要求是:
①看一看可以摆出的长方体有几层?每层几行?一行多少个?
②说一说,怎样计算长方体所含有的小木块数?
③把小组内摆长方体的相关数据填入表内。
每行个数
行数
层数
1立方厘米正方体的数量
长方体的体积
2、学生活动。
3、反馈方法,依次呈现表格。
师:同学们摆好了吗?说说你是怎么摆的?
师:老师也搭了一个,这个长方体的体积是多少呢?怎么想的?
课件出示:长4厘米、宽3厘米、高2厘米长方体
思考:进一步清晰数方块的方法。
教师将学生汇报的各种摆法的数据逐一填入表中。
师:是的,正像刚才同学们说的一样,只要把每行摆的块数乘摆的行数,就是每一层摆的块数,再乘层数,就是小木块的总块数,有几块,体积就是几立方厘米。
4、数方块求体积。
课件出示:
数一数,下列长方体的体积是多少?
5、归纳体积计算方法。
师:观察一下,刚才这些摆成的长方体所含有的小木块的数量与长、宽、高究竟有怎样的关系呢?
师小结:(点击课件出示下列图示)每行个数就是长方体的长,排的行数就是长方体的宽,叠的层数就是长方体的高。所以,长方体的体积就是长×宽×高。
6、得出长方体、正方体体积字母公式。
师:通过刚才的讨论,我们发现,长方体的体积=长×宽×高。如果一个长方体的长、宽、高分别是a、b、h,那么它的体积是多少呢?(根据回答板书)
师:是的,如果用字母v表示体积,那么v=abh就是求长方体体积的字母公式。
(2)、利用知识迁移探究正方体的体积。
师:那么正方体的体积又是怎样计算的呢?
师:(边板书边说):如果用字母v表示正方体的体积,用a表示它的棱长,那么正方体的体积公式是怎样的呢?
师根据学生回答出示:V= a·a·a
师:a·a·a也可以写做a3,V= a3读作“a的立方”,表示3个a相乘。
(3)、沟通长方体、正方体的体积公式
1.利用公式计算体积。
2.沟通长方体、正方体体积公式:体积=底面积×高。
师:我们已经会用公式求长方体、正方体的体积,如果告诉你长方体、正方体的底面积和高,你能计算它们的体积吗?
出示长方体立体图(在图中标注:底面积为15平方厘米,高4厘米)
思考:让学生感到用已经掌握用公式计算体积时,直接出示已知底面积
和高求长方体的体积。通过设置悬念,尝试解决、交流讨论,沟通长、正方体两者的公式。
师:同学们听明白了吗?其实,长方体的体积等于底面积×高(课件出示公式)
师:如果这是一个正方体呢?
课件出示正方体图(在图中标注:底面积为16平方厘米,高4厘米)
师:大家一定明白了长方体、正方体的体积有一个共同的计算方法就是体积=底面积×高。如果用s表示底面积,h表示高,字母公式就是v=sh。
出示:体积=底面积×高
V= s h
三、巩固练习
1、基本练习
(1).一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘米。 ( )
(2).一个正方体的棱长是2分米,它的体积是多少立方分米?
列式为23=2×3=6(立方分米) ( )
(3).棱长6厘米的正方体,表面积和体积一样大。( )
2、实际应用
师:想给一块体积为2000立方厘米的长方体水晶装饰品,配一个包装盒,包装盒能装吗?为什么?
(四)回顾小结
师:回顾一下,今天的学习大家有什么收获?
- 所有评论(0)